FV Time is a small-scale verification project developed in the Coq proof assistant using the Mathematical Components libraries. It is a library for managing conversions between time formats (UTC and timestamps), as well as commonly used functions for time arithmetic. As a library for time conversions, its novelty is the implementation of leap seconds, which are part of the UTC standard but usually not implemented in existing libraries. Since the verified functions of FV Time are reasonably simple yet non-trivial, it nicely illustrates our methodology for verifying software with Coq.
In this paper we present a description of the project, emphasizing the main problems faced while developing the library, as well as some general-purpose solutions that were produced as by-products and may be used in other verification projects. These include a refinement package between proof-oriented MathComp numbers and computation-oriented primitive numbers from the Coq standard library, as well as a set of tactics to automatically prove certain decidable statements over finite ranges through brute-force computation.
Mon 15 JanDisplayed time zone: London change
11:00 - 12:30 | Compiler / Program VerificationCPP at Kelvin Lecture Chair(s): Vadim Zaliva University of Cambridge, UK | ||
11:00 30mTalk | The Last Yard: Foundational End-to-End Verification of High-Speed Cryptography CPP Philipp G. Haselwarter Aarhus University, Benjamin Salling Hvass Aarhus University, Lasse Letager Hansen Aarhus University, Théo Winterhalter INRIA Saclay, Cătălin Hriţcu MPI-SP, Bas Spitters Aarhus University Pre-print File Attached | ||
11:30 30mTalk | UTC time, formally verified CPP Ana de Almeida Borges University of Barcelona and Formal Vindications S.L., Mireia González Bedmar University of Barcelona and Formal Vindications S.L., Juan Conejero Rodríguez University of Barcelona and Formal Vindications S.L., Eduardo Hermo Reyes University of Barcelona and Formal Vindications S.L., Joaquim Casals Buñuel University of Barcelona and Formal Vindications S.L., Joost J. Joosten University of Barcelona | ||
12:00 30mTalk | VCFloat2: Floating-point error analysis in Coq CPP Pre-print |